Semi-supervised Review-Aware Rating Regression (Student Abstract)

نویسندگان

چکیده

Semi-supervised learning is a promising solution to mitigate data sparsity in review-aware rating regression (RaRR), but it bears the risk of with noisy pseudo-labelled data. In this paper, we propose paradigm called co-training-teaching (CoT2), which integrates merits both co-training and co-teaching towards robust semi-supervised RaRR. Concretely, CoT2 employs two predictors each them alternately plays roles "labeler" "validator" generate validate instances. Extensive experiments show that considerably outperforms state-of-the-art RaRR techniques, especially when training severely insufficient.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi Supervised Logistic Regression

Semi-supervised learning has recently emerged as a new paradigm in the machine learning community. It aims at exploiting simultaneously labeled and unlabeled data for classification. We introduce here a new semi-supervised algorithm. Its originality is that it relies on a discriminative approach to semisupervised learning rather than a generative approach, as it is usually the case. We present ...

متن کامل

Semi-Supervised Multi-Task Regression

Labeled data are needed for many machine learning applications but the amount available in some applications is scarce. Semi-supervised learning and multi-task learning are two of the approaches that have been proposed to alleviate this problem. In this paper, we seek to integrate these two approaches for regression applications. We first propose a new supervised multi-task regression method ca...

متن کامل

Semi-supervised Gaussian Process Ordinal Regression

Ordinal regression problem arises in situations where examples are rated in an ordinal scale. In practice, labeled ordinal data are difficult to obtain while unlabeled ordinal data are available in abundance. Designing a probabilistic semi-supervised classifier to perform ordinal regression is challenging. In this work, we propose a novel approach for semi-supervised ordinal regression using Ga...

متن کامل

Semi-supervised Regression with Order Preferences

Following a discussion on the general form of regularization for semi-supervised learning, we propose a semi-supervised regression algorithm. It is based on the assumption that we have certain order preferences on unlabeled data (e.g., point x1 has a larger target value than x2). Semi-supervised learning consists of enforcing the order preferences as regularization in a risk minimization framew...

متن کامل

Supervised Nonlinear Factorizations Excel In Semi-supervised Regression

Semi-supervised learning is an eminent domain of machine learning focusing on real-life problems where the labeled data instances are scarce. This paper innovatively extends existing factorization models into a supervised nonlinear factorization. The current state of the art methods for semi-supervised regression are based on supervised manifold regularization. In contrast, the latent data cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i13.26996